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Abstract This paper describes an experimental implementation
of a design for an adaptive, parallel finite-element system. The
implementation was used to simulate the performance of this
design on several microprocessor-based multiprocessor
architectures. We conclude that it will be possible to build
hardware/software finite-element systems which exploit data
segmentation to achieve flexibility, modularity, and the ability
to process very large problems.
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A QUANTITATIVE EVALUATION OF

THE FEASIBILITY OF, AND SUITABLE HARDWARE ARCHITECTURES FOR,

AN ADAPTIVE, PARALLEL FINITE-ELEMENT SYSTEM

1. INTRODUCTION

1.1. Toward a New Generation of Finite-Element Systems

The finite-element method is an important and widely

applicable engineering tool, but current finite-element systems

(as characterized by NASTRAN) present certain practical

difficulties to the user. They have relatively inflexible

structures, and demand numerous critical and difficult

decisions--which must sometimes be made in an arbitrary fashion.

Computations are expensive and time-consuming.

The goal of the FEARS (Finite-Element, Adaptive Research

Solver) project is to lay the foundations for a new generation of

finite-element systems which are both superior engineering tools,

and capable of solving problems of dramatically increased size.

This project has been underway at the University of Maryland for

several years.

Our approach to improving the method as an engineering tool

entails: (a) interchangeable user-oriented interfaces based on a

generalized mathematical formulation of the problem, (b) reliable

posteriori error estimation in various norms, (c) adaptive

features to help the user achieve acceptable accuracy at

PFum am RA-an5 num
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acceptable cost, and (d) support of team cooperation. These

points are elaborated below.

(a) The mathematical formulation presented in [Zave &

Rheinboldt 79] is based on the concept of substructure analysis

used widely in engineering (the domain is defined as a

composition of subdomains of a special type, such as curvilinear

rectangles). The formulation is application-independent, and

constitutes a general "finite-element solver" for a class of

boundary value problems for partial differential equations

defined by a weak mathematical formulation. In other words, the

problem is given in terms of an appropriate bilinear form on

certain Hilbert spaces. A library of such forms could

potentially be accessed by commands in various application-

dependent interface languages. This would minimize input data,

and also make the latest progress in finite elements available to

users who are not specialists in this area.

(b) The system provides inexpensive, but reliable,

estimation of the error in a desired norm. The error estimation

is computed as a sum of error indicators (dependent on the

desired norm), which are associated with single elements and

computable locally from the finite-element solutions only.

(c) The adaptive features relate especially to selection of

the mesh (in the so-called "h-version" of finite elements), or in

general to the degree of the elements and the mesh when the "p"

or combined "p-h version" is used. Here we will concentrate on

the h-version used in FEARS (for more on the p-version see

[Babuska et al. 81), [Babuska & Szabo 81], [Babuska & Dorr 81]).
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It can be shown that optimal meshes equilibrate the indicators

(make them approximately equal). This leads to the principle for

adaptive generation of the mesh, namely equilibration of the

error indicators.

The adaptive features include prediction of the

computational costs, from any given mesh and solution, of

achieving further accuracy. This capability is used as the basis

for a command language which allows the user to specify the

meaning of the error, acceptable levels of the given error, and

acceptable computational costs. The system obeys these commands

automatically, generating low-level control decisions which meet

the goals and constraints if possible.

(d) In many engineering situations several people want to

work cooperatively on the same project, sharing relevant data but

not interfering unduly with each other's efforts. Modern

perspectives on multiprogramming make such controlled interaction

possible.

The above principles (a), (b), and (c) are explained further

in [Babuska & Miller 81], [Babuska & Rheinboldt 78a], [Babuska &

Rheinboldt 78b], [Babuska & Rheinboldt 78c], [Babuska &

Rheinboldt 79a], [Babuska & Rheinboldt 79b], [Babuska &

Rheinboldt 79c], [Babuska & Rheinboldt 80), [Rheinboldt 81], and

[Rheinboldt & Mesztenyi 80]. They have been developed

experimentally in the implementation of the FMP (FEARS

Mathematical Program) system, which runs on Univac and CDC

machines, and will be generally available at the end of 1981.
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1.2. An Experiment in Parallelism and Modularity

Our approach to increasing the size of systems that can be

solved entails a system architecture based on parallel processing

and data segmentation, so that technical and economic advances in

computer hardware can be exploited. The FEARS design presented

in [Zave & Rheinboldt 79] accomodates the engineering features

described above, and has such a modular, parallel structure.

This structure can be used to exploit the power of new and

existing "distributed" hardware architectures; a monolithic

system, on the other hand, cannot reasonably be implemented on

anything but a centralized computer facility.

This paper presents the results of experimentation with PF

(Parallel FEARS), an implementation of the FEARS design

specialized for studying the effects of parallelism and

modularity on system performance. Section 3 describes how we

implemented the design so as to get data on how it would perform

if it were running on several particular hardware architectures,

why we chose those architectures, and what experimental cases

were run. Section 4 summarizes the results relating to data

segmentation, real-time speedup, and hardware architectures.

2. THE FEARS DESIGN

2.1. Processes

The FEARS design is specified in terms of "processes". A

process represents independent computation on local data. The
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various processes of a system are encapsulated, and thus

communicate only by sending messages. Since processes are

understood to perform their computations asynchronously in

parallel with one another, organizing a system into processes

provides explicit parallelism. The "process" abstraction is

well-known and heavily used in the literature of computer systems

and parallel processing.

Figure 1 sketches the process and communication structure of

FEARS. Subsequent sections will explain the data contained in

each of these processes, the computations performed within them,

and their characteristic interactions.

Process-level parallelism is completely independent of

instruction-level parallelism, which is used by vector and

pipeline processors to speed up the execution of numerical

algorithms. The FEARS design neither includes nor precludes the

use of instruction-level parallelism in the execution of

individual process computations. There is a certain divergence

of approaches on a practical basis, however, because the computer

architectures which are best suited to process-level parallelism

(see 3.2) feature large numbers of processors. Vector/pipeline

processors tend to be too expensive for such casual replication.

Our reasons for designing FEARS as a set of interacting

processes were twofold. One was the hope that process-level

parallelism would provide a more powerful, cost-effective source

of real-time speedup in finite-element computations than

instruction-level parallelism. (This hope is in part justified

by the speedup observed in the non-automated use of substructure

!
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analysis in many engineering projects.) The other was the notion

that a finite-element system organized into encapsulated

p ocesses would have a distributed, modular charactur that would

be of potential use in many computing environments.

Consider, for instance, the (traditional) environment of the

large, centralized, multiprogrammed computer. The biggest

problem encountered by the implementor of a finite-element system

in such an environment will be storage management: since the

necessary data cannot possibly all fit in the portion of main

memory allocated to one user, carefully planned overlays must

swap the appropriate portion in for each phase of the

computation. The rest of the data will be disposed among a set

of mass-storage files, access to which must be minimized.

The process organization of FEARS provides exactly the kind

of structure that is necessary to do this. It identifies local

computations with the data they need, in such a way that

references to non-local data are minimized. Many operating

systems make explicit processes available to users. These

operating systems would perform storage management for FEARS

automatically--because it is their normal mode of operation to

swap in the data of a process when it is about to be scheduled to

run.

2.2. Subdomains

FEARS solves a system of two-elliptic partial differential

equations in two dimensions. The domain is defined as a union of

two- , one- , and zero-dimensional subdomains. Each domain has
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some homogeneity characteristic with respect to the mathematical

formulation: for example, either the form of the differential

equation, the boundary condition, or the error norm is constant

on the entire subdomain.

The user of FEARS describes the domain of his particular

boundary-value problem in terms of two-dimensional four-sided

figures (Figure 2(a)), each of which is automatically mapped

(one-to-one and smoothly) onto the unit square (Figure 2(b)).

Adaptive refinement proceeds independently within each unit

square (Figure 2(c)).

A process is assigned to each two- , one- , and zero-

dimensional open subdomain in the user's domain description.

Figure 2(d) represents the open subdomains immediately adjacent

to a particular two-dimensional subdomain (2DS), in terms of the

processes which would be assigned to them. A subdomain's process

contains all the system's data relevant to that subdomain, namely

the bilinear form, mappings onto the curvilinear domain,

adjacency relations to other subdomains, boundary conditions,

loads and load points, mesh definition, and current solutions.

The process is responsible for all transformations on these data,

and for answering the questions of other processes about the data

(since they cannot access them directly). Open subdomains must

be used, of course, to avoid the expense of redundant data and

the problems of keeping multiple copies consistent with one

another. Thus in Figure 2(d), the one- and zero-dimensional

aubdomains which are interior to the original problem domain are

also adjacent to (part of the border of) some other two-
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dimensional subdomain.

During refinement the operations of deciding which elements

to refine are completely internal to each 2DS process. If an

element on the border is refined, however, this has the effect of

creating a new mesh point in the adjacent one-dimensional

subdomain. The 2DS process sends a message to the IDS process

requesting it to form the additional point.

Most other phases of the computation have the same

character: 2DS processes do almost everything locally, needing

only to communicate with the IDS and 0DS proce.sses on their

boundary in situations involving the closed subdomain. A IDS

process acts as the interface between the 2DS processes on either

side of it, answering questions and honoring update requests from

both. These local operations are finally connected, of course,

in the global solution of the macro-stiffness equations.

Elimination goes on at the level of the two-dimensional

subdomains separately, until finally the only unknowns left are

located in one- and zero-dimensional subdomains. These form a

fairly dense submatrix (in the case of only one two-dimensional

subdomain, this submatrix is full), which is solved in its own

dedicated process.

Since most of the parallelism in FEARS comes from the

subdomain processes, the user sets the degree of parallelism in

his initial domain description. He is also responsible for

making a reasonably intelligent division of the domain, one which

balances the amount of computation to be done by each process.

This seems to us a legitimate way to use the engineer's skills



9

and afford him some control, without requiring too many hours of

drudgery or decisions that can adversely affect the validity of

the numerical results.

2.3. Projects and Problems

The FEARS design is intended to support the situation in

which a number of people are working on a common project. This

is done by separating the data which are common to all work on

the project from those data belonging to individual efforts. The

"project" information consists of the subdomain adjacency

structure, the bilinear forms, and the mappings onto the

curvilinear domain space. The "problem" information consists of

the loads and load points, boundary conditions, mesh geometry,

and current solutions. Thus an individual can explore the

effects of particular right-hand sides on the mesh refinement and

solution values, while other individuals are doing their own.

The FEARS system is initialized by distributing the pieces

of the project data to their respective subdomain processes (thus

the system's data is partitioned along two dimensions: the

subdomain division and project vs. problem).

Each active problem is represented by a "user" process.

When the user is not performing finite-element computations, his

problem information resides within the user process. The user

process can perform post-processing, graphic display, and other

non-FEARS operations, and it can query subdomain processes (so as

to get project data) even while the subdomain processes are

engaged in finite-element computations.

$
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One user at a time can be doing finite-element computation~s.

Once that user gets control of the system, his "turn" is

initialized by the distribution of his problem data to the

subdomain processes. The system performs various "passes" (2.4),

as the user directs. The effect of a pass on the problem data is

to make the mesh finer and the solutions more accurate. When the

user has no more directives to the system his turn is over, and

the updated problem data is sent back from all the subdomain

processes to the user process which was its source.

2.4. Passes

The natural unit of computation within FEARS is the "pass",

each of which has the potential to refine the mesh, compute new

solution values, and estimate the error of the solution under a

prescribed norm. Passes are divided into phases, and are

controlled centrally from a "control" process which sends out an

order to each subdomain process at the beginning of each phase

telling it what to do during that phase. The phase ends when the

control process has received answers or reports from all relevant

subdomain processes signifying that they have finished their

work. Thus the control process synchronizes the subdomain

processes in accordance with the phases.

There are two kinds of passes: long and short. A long pass

has refinement, solution, and error estimation phases, while a

short pass is one phase all by itself. Each phase will be

discussed in turn.
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2.4.1. The Refinement Phase of a Long Pass

At the beygnrina of the refinement phase, the control

process sends to each 2DS process- an error indicator value called

the "high cutoff". This value is obtained b-y ,<.ilyzing previous

indicators, so that the equilibration will be achieved as well as

possible. The 2DS process proceeds to refine each element in its

current mesh whose error indicator is above the high cutoff;

refinement means that the square corresponding to the particular

element is subdivided into four squares. New points are added to

one-dimensional subdomains, when necessary, as described above.

When finished with the refinement, each 2DS process reports

back to the control process with information needed to compute

computational costs and control further functions. When all the

2DS processes have finished, the control process requests

accounting information from all iDS processes. The phase ends

when all lDS processes have reported.

2.4.2. The Solution Phase of a Long Pass

During the solution phase of a long pass, new solution

values are calculated on all "active" two-dimensional subdomains.

An "active" two-dimensional subdomain is one containing at least

one element whose error indicator is higher than a "low cutoff"

value. Any subdomain which has just been refined is active,

because the low cutoff is always set lower than the high cutoff.

At the borders of active regions, the current solution

values are taken as boundary conditions for the solution within



the region. The solutior. of the resulting linear system requires

the participation of a "solver" process, and different solver

processes can handle noncontiguous active regions in parallel

(Figure 3).

The solution phase begins when the control process sends

orders to active 2DS processes and active solver processes. An

order to a solver process contains a list of all points in its

active region. From this information the solver sets up a

template for the block macrostiffness matrix corresponding to

these points.

Meanwhile the active 2DS processes have begun to work on

their orders, which contain the identification of which of the

lDS and ODS processes on their boundary are external (constant)

or internal (variable) to the active region. The 2DS processes

use a wave-front technique for computing microstiffness matrices

(querying their borders of 1DS and ODS processes as needed) and

decomposing the block macrostiffness matrix corresponding to

their internal points (see [Rheinboldt & Mesztenyl 803,

especially Figure 9). During this procedure they generate a set

of updates for the block matrices representing the one- and

zero-subdomains in their regions.

When a 2DS process has completed its decomposition, it sends

the updates to its solver process. When a solver process has

received updates from all 2DS processes in its active region, it

completes the decomposition of the part of the macro-stiffness

matrix corresponding to its one- and zero-subdomain points

augmented by the right-hand side. This allows the solver to
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complete the solution for its block, which it then sends back tu

the IDS and ODS processes, wherL they are incorporated into the

c-rrent mesh. A solver process completes its work by sencuini a

restart signal to each 2DS process it, its region.

Upon receiving the restart signal, an active 2DS process

completes the solution for the block corresponding to its local

points; to do this, it must ask its neighboring IDS arid ODS

processes for their new solution values. It also supplies its

neighboring IDS processes with information they will need to

compute new directional derivatives (see 2.4.3). A 2DS process

completes its work in this phase by signalling the control

process that it has finished. When the control process has heard

from all active 2DS processes, the phase ends.

2.4.3. The Error Estimation Phase of a Long Pass

"Irregular nodes" are nodes formed by adaptive refinement

which do not participate in solutions because they are not

vertices of four elements (Figure 4). The directional

derivatives which are needed to compute error indicators are

obtained by interpolation. In the case of irregular nodes found

in IDS processes, that interpolation must be performed after the

IDS process has received solution information from the 2DS

processes on either side.

Thus the error estimation phase begins when the control

process orders all IDS processes to perform this interpolation.

After all IDS processes have reported completion, all 2DS

processes are ordered to compute new error indicators. They do

j
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this, and report back to the control process with information

needed for cost accounting ani further control decisions.

2.4.4. The Short Pass

A short pass is a shortcut which enables rapid, approximate

adaptive refinement of the mesh. This is clearly desirable,

since all activity before the solution on the final mesh serves

only to generate that mesh. Since short passes produce

considerable compromises in accuracy, however, they should be

interrupted at regular intervals by long passes.

A short pass begins when the control process sends orders

containing a high cutoff to all 2DS processes. Each 2DS process

refines all its elements with error indicators above the high

cutoff, computes a solution value for each new point by treating

the corners of the refined elements as boundary conditions

(Figure 5), and computes error indicators for the new elements.

Thus solutions for new points and error indicators for new

elements are computed using only information local to the

elements from which they were refined. The phase ends when each

2DS process has reported back with control and accounting

information.

2.5. Automatic Control

Each pass of the FEARS system requires the following control

decisions: whether there is to be another pass, whether the pass

is to be long or short, and what the high and low (long pass
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only) cutoffs are to be. The FEARS design allows the user to

take these decisions himself, or to have them made automatically.

In "automnatic" mode, the user initiates a sequence of )AssCs

with a command that specifies the desired accuracy he hopes to

achieve, a limit on the computational cost he is willing to

incur, a limit on the iiumber of passes that may be performed in

response to this command, and the desired ratio of short to long

passes.

Based on this command, the control process orders a sequence

of passes which always ends with a long solution ovez the whole

domain. it attempts to satisfy the user's goals for cost and

accuracy, based on the information reported to it by the

subdomain processes at the ends of phases. Costs are estimated

as described in CZave & Rheinboldt 79]. Whatever the outcome,

the cost and accuracy of the result are reported to the user.

Details of the user interface and automatic control

decisions can be found in [Zave 79].

3. THE FEARS EXPERIMENT

3.1. Specification and Implementation of the Design

The FEARS design is specified formally in the executable

specification language described in [Zave 82]. The specification

describes processes and interactions as well as functions and

data structures; it is complete down to, but not including,

numerical algorithms and numerical data structures. The data
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structures used to support an adaptable mesh are presented in

[Rheinboldt & Mesztenyi 80].

The FEARS design is implemented by the program PF in FORTRAN

V and assembly language on a Univac 1108. Our implementation

runs configurations with one user process, one solver process,

and up to 81 subdomain processes (16 2DS, 40 IDS, 25 ODS).

Each 2DS process is limited to approximately 256 elements.

PF is divided into three distinct parts: (a) There is code

which is an image of the formal specification, and therefore

defines the process, control, and communication structure down to

the level that numerical functions are applied to numerical data

structures. (b) There is support code on which the

"specification" runs. It simulates parallel computation of the

processes and carries out inter-process communication. (c)

There is numerical code, which is always called as a subroutine

from the "specification" code. Running under a small interactive

driver of its own, the numerical code forms the program FMP (see

1.1). The sizes of these program parts are approximately 8000

(code only), 15000 (code and data), and 18000 (code only) 36-bit

words, respectively.

The output of a run of PF is twofold. There is the

numerical output of the finite-element computation, which is

identical to that of FMP. The other is "tasking" information--a

machine-independent trace of parallel computation and process

interactions. As is described in Section 3.2, the tasking

information was used to simulate how FEARS would have performed

if implemented on any one of several new computer architectures.



17

This intermediate representation made it easy and inexpensive for

us to perform one FEARS run and then evaluate its performance on

several machines.

A "task" is computation performed completely within one

process, and is defined as a longest sequence of computational

steps uninterrupted by the need to communicate with another

process. Each process goes through a sequence of tasks, each

task beginning with the receipt of a message from some process

and ending with the sending of a message to some other process

(Figure 6). A process may have to wait between tasks, if its

continued computation is dependent on progress in other parts of

the system.

The tasking information consists of the length (computation

time) of each task, the size of each message, and the

identification information used in interpreting the messages so

as to produce the intended cooperation and synchronization among

processes. This is sufficient to reconstruct the communication

under different assumptions about computation and communication

times.

3.2. Hardware Architectures and Their Simulation

3.2.1. Trends in Parallel Architectures

Continued decreases in the cost of computer hardware have

sparked continuous interest in the use of parallel processing to

increase speed and throughput. There are two general approaches
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to doing this: parallelism within a single processor, applied to

the execution of a single instruction stream, or the use of

multiple processors. The readers are undoubtedly familiar with

the much-publicized research activity in building powerful

computers with instruction-level parallelism and in utilizing

those computers for numerical applications; we have eschewed th.:.

approach for the reasons given in 2.1.

Multiprocessor architec Lures are the subject of equally

vigorous research activity, the more so as they are often based

on relatively small and si tt] microprocessors. The cost of such

processors can be astoundingly low. One computer we shall

consider (the ZMOB) is based on 256 Z8OA microprocessors;

although these chips now cost less than $10 apiece, the effective

throughput of the machine is estimated at 75 million instructions

per second.

In a multiprocessor architecture, each processor executes

its own program, in parallel with other processors and

independent of them except for occasional explicit communication.

There is a natural correspondence between this mode of operation

and the process structure of FEARS. Thus our investigation of

hardware architectures suitable to become FEARS machines was

limited to multiprocessors.

The biggest question in multiprocessor design is how the

various processors communicate with each other,... One, approach to

doing this is to have the processors share a common memory, as in

the C.mmp architecture, in which 16 PDP-11/40E minicomputers with

standard peripherals are connected to a common primary memory via
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a crossbar switch (see [Jones & Schwarz 80] for a convenient

overview). This approach has been largely discredited due to the

problems caused by contention for the shared memory. Contention

can degrade performance substantially even for a modest number of

processors, and makes expansion to a large number of processors

out of the question.

The other alternative is for each processor to own a private

memory in which its programs and data are stored, and to

communicate with other processors by means of buses

(communication links) designed for the purpose. In the next

section we describe two promising multiprocessor architectures of

this type.

3.2.2. Two Multiprocessors

ZMOB is a research computer now being constructed at the

University of Maryland ([Rieger 79], CRieger et al. 801, [Rieger

et al. 81]). It is based on 256 ZB0A 8-bit microprocessors, each

with up to 64K bytes of memory and an average instruction time of

2.5 microseconds. There are plans to augment the ZB0A's with

32-bit floating-point hardware so that the machine can be used

for research in numerical analysis. Times for floating-point

operations are in the range of 30-70 microseconds.

Each processor in ZMOB can send messages to any other

processor, where a message can be a byte sequence of any length.

A processor sends a message by placing it in addressed, two-byte

packets on a "conveyor belt" which links all the processors.

Since the conveyor belt is circular, each "bin" on it visits each
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processor on each revolution. mhen a bin containing a message

packet arrives at the "mail stop" of the addressed processor, the

addressed processor removes the packet.

Since each processor owns the bin in which it .ends message

packets (i.e. there are 257 bins on the conveyor belt, 256 for

the Z80A's and one for the mainframe interface), there is no

interprocessor competition for the link and the speed of message

transmission is not affected by loading. Furthermore, the speed

of the conveyor belt is such that a processor can send a message

as fast as it is capable of loading bytes from memory into its

output register, which requires a small instruction loop. In

other words, there is a "perfect" communication link connecting

the (relatively slow) processors. To receive a message, however,

a processor must stop what it is doing (it will be notified by an

interrupt) to store the incoming bytes in its memory one by one.

ZMOB is connected to a DEC VAX 11/780 via the 257th mail

stop. The VAX is used for program preparation, mass storage,

etc.

on* is a research computer built at Carnegie-Mellon

University. It is composed of 50 microcomputer modules, each

comprised of a DEC LSI-11 processor, a standard LSI-11 bus,

memory, and devices ([Jones & Gehringer 80), [Jones & Schwarz

80)).

Up to 14 modules (10 in the current configuration) are

gathered into a cluster. Communication within a cluster takes

place on a "map" bus, and is managed by a switch called a "Kmap".

Any number of clusters (5 in the current configuration) can
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belong to a Cm*. The Kmap's for each cluster are connected via

intercluster buses.

The style of communication among modules can be altered by

microprogramming the Kmap's, which are fairly powerful processors

in their own right. In the mode we have studied, the Kmap's

simulate a single uniformly addressed shared memory, but one with

non-uniform performance. A local reference (a processor

referencing its own memory) takes approximately 3 microseconds,

an intracluster reference (controlled by the cluster's Kmap using

the map bus) takes approximately 9 microseconds, and an

intercluster reference (involving the participation of the Kmap's

of both clusters, communicating on an intercluster bus) takes

approximately 26 microseconds. A processor is not usually slowed

down by other modules' references to its memory, as these'are

handled independently by the "Slocal" switch, which connects each

module to its map bus.

3.2.3. Performance Simulation of the Multiprocessors

We simulated the performance of FEARS, as if implemented on

ZMOB and several variants of Cm*, by post-processing the tasking

information obtained by running PF. In effect we "reran" each

computation, but only in enough detail to determine how long it

would take, not enough to produce numerical results. To do this

it was necessary to determine, on each simulated machine, how

long it would take to run tasks and how long it would take to

send messages. The relevant parameters are listed in Table 1.

Each task time measured on the Univac was multiplied by a
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constant factor to reflect the relative slowness of the

microprocessors (the Z80A and LSI-11 are approximately equal in

p)wer). These constants were chosen with some care, by counting

and grouping machine instructions, determining conversion factors

for each group, and then computing a weighted average of the

conversion factors. Even so, the constant is a gross

approximation at best. Yet there is no better way to compare the

execution time of the same program on two machines short of

implementing it on both machines ([Agrawala 79]). In addition to

the various differences in the instruction sets themselves, there

is great variability in the code produced by different compilers.

In our case we could not do direct comparison because no FORTRAN

compilers for the Z80A or LSI-11 were available to us.

In some configurations, tasks in the solver were given a

much lower conversion constant than other tasks. This is because

a multiprocessor is often interfaced with a larger conventional

computer (as ZMOB is to a VAX), and solver tasks (representing

linear system solutiohs) should probably be assigned to the

latter machine.

The time it takes to send a message is dependent on the

communication architecture of the machine. For ZMOB there is a

fixed delay of 40.96 microseconds per word (each 36-bit Univac

word is assumed to convert to four bytes, and the conveyor belt

moves two bytes every 20.48 microseconds), with the additional

overhead that both the sender and receiver must spend full time

attending to the message while it is being transmitted, and

cannot do any other work.
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For Cm* there is a per-word niussagc transmission delay, but

it depends on whether messages are inter- or intra-cluster. Thus

.onfiguration Cm*-l differs from -2 and -3 in that in Cm*-l, the

user, control, and solver processes are each in their own

clusters (separate from the clusters in which the subdomain

processes reside). In Cm*-2 and Cm*-3 only the solver is

isolated in its own cluster. The transmission times are

determined by doubling the memory-reference times, again because

the data path is two bytes while finite-element words are assumed

to be four. We attempted some variations in the assignment of

subdomain processes to clusters, but this had a negligible effect

on the measurements.

The final simulated machine, Cm**, is a hypothetical Cm*

with a single large shared memory suffering no contention. The

fact that "messages" are still "sent" from one task to another

reflects the FEARS modularity, which assigns each task its own

private areas of the shared memory. The behavior of Cm** is the

best-case boundary of the behaviors of all configurations,

cluster assignments, etc. of Cm*.

3.3. Experimental Domains and Raw Data

Experiments were run using five basic domains (project

files), which are depicted in Figure 7(a)-(e). Table 2 describes

and gives the raw Univac processing data for each of the 22 jobs

(a job is a "turn" on a "problem") run on the FEARS system.

In Table 2, "memory usage" refers to the data for program

parts (a) and (c) described in 3.1. It is computed by summing

I
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1300 words for the user process, 400 for the control process,

26000 for the solver process, 14000 for each 2DS process, 500 for

aach IDS process, and 50 for each ODS process. The subdomaiii

data structures are at their maximum size, i.e. are capable of

accomodating 256 elements in each two-dimensional subdomain.

These figures reflect total file storage rather than main memory

usage, because only the solver data or the data for one "frame"

(a 2DS process and its surrounding IDS and ODS processes, as in

Figure 2(d)) is in main memory at any given time.

4. EXPERIMENTAL RESULTS

When FEARS tasking information is run through a simulator of

one of the five machine configurations, the output is a number

called the "speedup factor". The speedup factor is a measure of

how much faster that FEARS run would have been executed by t'-.t

parallel machine, as compared to an implementation oL a

sequential machine with a processor of the same power as those in

the parallel machine. It is computed by dividing the simuldted

completion time of the job into the sum of all its converted task

times.

Thus the speedup achieved reflects both the advantage of

parallel execution and the disadvantage of communication delay.

Other advantages (such as smaller memories) and disadvantages

(such as the need for more processors) of the proposed

implementations are static in nature, and can therefore be

evaluated without simulation.

The results are organized into the answers to three
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questions: What is the effect of data segmentation? How m~ch

real-time speedup is achieved? What can we conclude about the

suitability of various hardware architectures?

4.1. Data Segmentation

The FEARS design provides a nontrivial segmentation of the

finite-element data along subdomain boundaries. This

segmentation is potentially useful for dynamic storage ma:agement

and system modularity, as well as parallel processing. For

instance, it solves many of the technical problems involved in

maintaining a very large finite-element domain, but only working

on selected parts of it at any given time.

The experiments that best indicate the efficiency of the

data segmentation are those wil. a single two-dimensional

subdomain (Domain A). This is because the major overhead

incurred on account of data segmentation is that a 2DS process

must communicate with its frame of lDS and ODS processes, and the

experiments with Domain A show this effect and no other.

The results of these experiments are shown in Table 3. The

speedup factors are clustered around 1.00; this shows that the

time overhead incurred for communication is compensated for by

the parallelism, so that FEARS data segmentation does not slow

finite-element computations down. The amount of parallelism is

small here, of course, because the IDS and 0DS processes do

little computation.

These results will not be very different for any size of

domain, because even in the largest of domains, a 2DS process
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still communicates only with the other subdomain processes in its

immediate frame. The only potential difference is that IDS and

ODS processes may be slightly busier handling requests from the

several 2DS processes whose frame they belong to. This effect is

finite and bounded, however, and demands on these processes are

relatively light.

4.2. Real-Time Speedup

The FEARS design also offers the potential for faster

finite-element computation by taking advantage of parallel

execution. This was evaluated by means of experiments with

Domains B, C, D, and E, the results of which are given in Table

4. In addition to the speedup factor, Table 4 also reports a

"speedup efficiency", which is the speedup factor divided by the

number of two-dimensional subdomains. This is based on the

notion that the number of two-dimensional subdomains indicates

fairly the greatest degree of parallelism we could hope to

achieve with a given domain.

Modest speedups are achieved, but the speedup factor seems

to have an upper bound at about 5. For 16 2DS processes, the

speedup efficiency is around 25 per cent. We were unable to run

tests with more than 16 two-dimensional subdomains due to limits

on computational resources.

We conjecture that the speedup factor would hover around 5

even for experiments with more such subdomains. This is based on

careful inspection of the tasking data as run on ZMOB, which

suggests the following explanation for the degree of parallelism
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observed: At the beginning of each phase the control process must

send an order to each participating subdomain process.

typically, by the time the orders to the fourth or fifth 2DS

process are going out, the first 2DS processes to be activated

are completing their work. Because of the ratio of communication

to processing times, rarely if ever are more than 5 2DS processes

active in parallel.

Better performance with respect to parallelism would be

expected if the task-processing times were larger relative to

communication delays. Probably the best way to achieve this

would be to make each two-dimensional subdomain larger, with a

substantial number of elements to process. We were unable to

experiment further in this direction due to limitations on our

implementation.

4.3. Hardware Architectures

It can be seen from Tables 3 and 4 that speedups are not

significantly affected by the communication structures of the

machines. Cm** performs the best, as would be expected, but even

on jobs with 16 2DS processes it was only slightly faster than

ZMOB. Thus we conclude that FEARS performance is not sensitive

to differences between members of our general class of

microprocessor-based multiprocessors.

The one factor that did make a difference is using a faster

processor for solver tasks. Cm*-l and Cm*-2, which do not have

this feature, are definitely the worst performers.
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5. CONCLUSION

Before drawing final conclusions, we would like to make a

few observations about the measurements and measurement

techniques used here. Unfortunately, performance simulation

studies of this type are intrinsically high in cost and low in

accuracy--they are attempting to find a representative

simplification of complex dynamic behavior no one really

understands. (One characteristic error is pessimistic results

because normal optimizations and efficiency "tricks" are not

exploited.) The cost and resource demands of simulation imposed

important limitations on the test cases we could attempt (Section

4). Nevertheless, the stability of the measurements we were able

to make argued against a proliferation of test cases within the

range where experimentation was feasible.

The most important thing to be said about the speedup

factors measured is that they are realistic because they include

the whole computation, including initialization, communication,

and largely sequential stages of processing. In studies of

parallelism there is a great temptation to concentrate on the

highly parallel stages of algorithms, ignoring the overhead

stages which fall between them, and which may easily be more

significant in terms of time and resources. No such "editing"

has been done here.

The results on real-time speedup are not particularly

promising. For machines in the class studied here, communication

delays clearly dominate processing, so that overall speeds are

not greater than those of conventional finite-element

. .
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implementations. It is possible that much faster communication

hardware or much larger subdomain processes would correct the

mbalance and lead to impressive real-time speedups, but this has

not been demonstrated.

Ideally the result of this study would be compared to

similar work, but little similar work seems to exist. There have

been many years of computer science research interest in parallel

algorithms, but the focus has been on mathematical analysis of

compact single-purpose algorithms (for examples, see [Baudet 78]

and [Fishburn 81]), rather than on empirical study of whole

systems encompassing several algorithms and the bookkeeping to

make them work together at some useful task. Furthermore, most

of these algorithms assume a very large number of processors,

such as one for each point in the problem domain.

We believe that the emphasis of those interested in parallel

systems will soon change. We conjecture that whenever real-time

speedup has been attempted in the practical context of a whole

system to do some useful task, the results have been

disappointing (and thus not widely disseminated). This is

because even the best partitions of computations into distributed

parallel tasks suffer too much communication overhead. Such

partitions offer other advantages, however, such as increased

modularity, reliability, maintainability, and extensibility of

systems. These are increasingly important characteristics, and

we predict that interest in using distributed partitions of

systems as a way to achieve them will grow steadily.

In this light the FEAR$ design does look promising, because



30

the data segmentation works well and is not sensitive to minor

variations in hardware architectures. It is a reasonable

segmentation strategy from an engineering standpoint, and ought

to be exploited in the making of more manageable, adaptive

finite-element systems. One possible application, for instance,

would be a finite-element system able to run on a home computer.

Such a system would never have more than one 2DS process in main

memory at a time. Although a computation might take several

hours, the convenience would be similar to that of a pocket

calculator, a combination that might prove tantalizing to many

engineers.

Our current recommendation for a full-scale "finite-element

machine" would be a multiprocessor with somewhat fewer, larger,

more powerful processors than offered by ZMOB or Cm*. Each

processor should have the power and memory to perform reasonably

fast computations for reasonably large two-dimensional

subdomains. Having several of these running at once would

reproduce the best speedups realized by our experiments. More

importantly, the machine could be organized around highly

interactive control and a mass-storage-management system based on

segmentation by subdomains, so that the engineer could focus on

interesting subdomains and develop trial meshes quickly and

inexpensively.
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SIMULATION task times message transmission
PARAMETERS

conversion conversion transmission additional
factor, factor, time overhead

SIMULATED non-solver solver (microseconds/
MACHINES\ tasks tasks word)

ZMOB 5 1.2 40.96 sender and receiver
detained during
transmission

Cm*-i 5 5 18, 52 only sender detained
during transmission

Cm*-2 5 18, 52 only sender detained
during transmission

Cm*-3 5 1.2 18, 52 only sender detained
during transmission

Cm** 1.2 6 only sender detained
during transmission

Table 1. Simulated machines and simulation parameters.

*1

__
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E 3

iAlong pass, 4 elements, no .7816 44 266 50.2

2Along pass refining 4 to 16 3.404 44 338 49.8
elements

3 A long pass refining 16 to 64 28.37 44 362 138
elements

4 A long pass, refinemert at boundary 122.2 44 410 457
to go from 64 to 112 elements

5 A long pass refining 64 to 256 244.8 44 410 857
elements

6 B long pass, 16 elements, no 3.941 90 979 48.3
refinement

7 B long pass refining 16 to 64 28.64 90 1315 62.8
elements

8 B long pass, refinement at bounda- 67.21 90 1323 103
ries to go from 64 to 112 elements

9 B long pass refining 64 to 256 262.4 90 1459 283
elements

10 C long pass, 64 elements, no 20.21 273 3803 48.4
refinement

11 C long pass, refinement at bounda- 41.51 273 4371 48.4
ries to go from 64 to 112 elements

12 C long pass refining 64 to 256 180.8 273 5243 73.8
elements

13 D long pass, 16 elements, no 4.778 90 1003 48.4
refinement

14 D long pass, uneven refinement of 16 9.025 90 1183 46.5
to 28 elements

15 D long pass, uneven refinement of 28 15.53 90 1239 51.6
to 46 elements

16 D long pass, uneven refinement of 46 25.33 90 1255 61.6
to 64 elements

17 D long pass, uneven refinement of 64 55.42 90 1309 91.1
to 100 elements

18 E long pass, 12 elements, no 3.531 75 782 47.6
refinement

19 E long pass refining 12 to 48 27.28 75 1062 67.2
elements

20 A 3 short passes and 1 long, refin- 267.3 44 614 574
ing from 4 to 256 elements

21 B 2 short passes and 1 long, refin- 283.1 90 1923 216
.ing from 16 to 256 elements

22 C 3 short passes with very uneven 295.9 273 5921 84.9
refinement followed by 1 long pass

Table 2. Description of jobs and raw data.

8 B lon ...... re i em n at bounda- 67 2 ............

...... .... ....... to- -go fro 64. to 112. elements i . : ..
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"Ma chine

Job ZMOB Cm*-1 Crn*-2 Cm*-3 Cm*
Number ______________________

1 1.30 1.26 1.31 1.34 1.42

2 1.07 1.05 1.06 1.08 1.10

3 1.00 1.00 1.00 1.01 1!.01

4 .994 -- -- -- 1.00

5 .993 --- -1.00

20 .994 --- -1.00

Table 3. Speedup factors for jobs using Domain A.
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ZMOB Cm** Cm*-.1 Crn*-2 Crn*-3

o.F E S.F. S.E. S.F. S..S.F. S..S.F. S.E

6 4 2.79 69.8 3.23 80.6 2.10 52.5 2.18 54.5 2.93 73.3

7 4 2.66 66.5 2.77 69.2 1.77 44.2 1.78 44.5 2.73 68.2

8 4 2.60 65.1 2.68 67.0 -- -- -- -- -- --

9 4 2.55 63.8 2.61 65.4 1.67 41.8 1.67 41.9 2.61 65.1

10 16 4.16 26.0 5.04 31.5 2.26 14.1 -- -- 4.44 27.8

11 16 4.29 26.8 4.B2 30.1 2.09 13.1 - -- 4.51 28.2

12 16 3.86 24.1 4.06 25.4 1.86 11.6 - -- 3.99 25.0

13 4 2.91 72.8 3.33 83.3 -- -- -- - --

14 4 2.78 69.4 2.98 74.5 -- - - - -

15 4 2.91 72.7 3.03 75.7 -- - - - -

16 4 2.26 56.6 2.31 57.9 -- - -- - -

17 4 2.31 57.9 2.35 58.8 -- - - - -

18 3 2.54 84.8 2.85 94.9 -- - - - -

19 3 2.51 83.5 2.59 86.5 - - - - - -

P 21 4 2.65 66.4 2.71 67.8 -- - - - -

22 16 4.68 29.2 4.89 30.5 - - - - - -

Table 4. Speedup factors and efficiencies for jobs using Domains
* I B, C, D, and E. ("S.F." stands for "Speedup Factor";

"S.E." stands for "Speedup Efficiency", and is a
percentage.
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